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Abstract This paper discusses the issues about the correlation of spatial variables during spatial
decisionmaking using multicriteria evaluation (MCE) and cellular automata (CA). The correlation of
spatial variables can cause the malfunction of MCE. In urban simulation, spatial factors often ex-
hibit a high degree of correlation which is considered as an undesirable property for MCE. This
study uses principal components analysis (PCA) to remove data redundancy among a large set of
spatial variables and determine ‘ideal points’ for land development. PCA is integrated with cellular
automata and geographical information systems (GIS) for the simulation of idealized urban forms
for planning purposes.
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Cellular automata (CA) were first introduced in 1948 by von Neumann and Ulam to model

complex dynamic systems, such as biological reproduction and crystal growth. Although CA

models only use very simple rules, they can generate very complex behavior and global structures.

In this way, the role of local rules can be compared to that of DNA in life sciences. CA models

have been increasingly used in the simulation of complex systems, such as biological reproduction,

chemically self-organizing systems, propagation phenomenon, and human settlements[1, 2].

CA are quite suitable for the simulation of land use changes and evolution of urban systems

because of their powerful spatial modeling capabilities. In recent years, many studies on urban CA

models have been reported with interesting outcomes[2�7]. CA models can be used for testing hy-

potheses and theories, such as fractal properties and the evolution of dynamic systems. The inte-

gration of GIS and CA can help to solve complex decision problems as they can benefit from each

other. A series of constraints can be defined and obtained from GIS to address environmental con-

cerns so that sustainable cellular cities can be simulated[5, 8]. Multiple criteria evaluation tech-

niques (MCE) can be incorporated into CA models to deal with various complex spatial variables

in urban simulation[4].

Numerous complex and conflicting factors are involved in spatial analysis and decisionmak-

ing processes. Multicriteria evaluation techniques (MCE) can be employed to handle a number of

criteria in decisionmaking[9]. MCE techniques began to emerge to solve decisionmaking and plan-

ning problems in the early 1970s[10]. The planning process is becoming more complicated in tech-

nical, physical, social and economic aspects. MCE can be used for analyzing the complex trade-
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offs between different alternatives. MCE typically requires that the evaluation criteria be inde-

pendent of each other. A high degree of correlation between evaluation criteria is considered as an

undesirable property for decisionmaking[11].

This paper discusses the issues about the correlation of spatial variables in urban simulation.

Principal components analysis (PCA) is used to remove data redundancy. PCA is among the most

widely used methods for spatial data handling, owing to its simplicity and straightforward inter-

pretation. It can transform a set of correlated variables into uncorrelated orthogonal variables. This

paper examines the integration of PCA and CA models in reducing data redundancy among a large

set of spatial variables for urban planning.

1 Principal components analysis and cellular automata for urban simulation

It is difficult to determine weights when many factors are involved. It is inadequate to carry

out CA simulations based on the direct use of MCE when there are correlated spatial variables.

The correlation of factors may result in the malfunction of the weighting for MCE by ‘double

counting’ similar variables. Principal components analysis (PCA) can be integrated in CA simula-

tion to tackle the problem of correlation among many layers of spatial data. PCA is a linear trans-

formation of data which rotates the axes of variable space along lines of maximum variance. The

transformation is based on the following equation[12]:
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where pcij is the component score of the jth principal component for cell i, Xik is the value of the

kth criterion or layer for cell i, and Ekj is the element of the eigenvector matrix at row k and col-

umn j.

The eigenvectors and eigenvalues for the linear transformation are mathematically derived

from the covariance matrix by the following equation:

Cov ,TE E V= (2)

where Cov is the covariance matrix, V is the diagonal matrix of eigenvalues, E is the matrix of

eigenvectors, and T is the transposition function.

Independent compressed components can be produced by PCA and used for CA simulation.

This can help to solve the problems for general MCE methods in dealing with correlated variables.

PCA can be integrated with CA for better urban simulation. Standard cellular automata may be

given by the neighbourhood function[8].

S t+1 = f (S t, N), (3)

where S is a set of all possible states of the cellular automata, N is a neighbourhood of the cells

providing input values for the function f, and f is a transition function that defines the change of

the state from time t to t +1.

CA models usually use discrete states for simulation. Traditionally, CA simulation only uses

a binary value to address the status of conversion based on the estimated probability. The prob-
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ability of conversion is calculated based on some kind of neighborhood function. Usually, the

probability is further compared with a random value to decide whether a cell is converted or not (1

for converted and 0 for non-converted). In our model, the status of a cell has a continuous ‘grey

value’ between 0�1 to represent the stepwise selection or conversion process. A cell will not be

suddenly ‘selected’ or converted for land development. The ‘grey value’ is calculated based on the

cumulative equation.
1

∆ ,t t t
i i iG G G+ = + (4)

where G t is the ‘grey value’ for development which falls within the range of 0�1 at time t, and i

is the location of the cell. The simulation will stop when t reaches the final time T 0. A candidate

cell will not be regarded as a developed cell until its ‘grey value’ reaches 1.

The increase of the ‘grey value’ is based on the neighborhood function and the similarity

between a candidate cell and the ‘ideal point’. The first part is the traditional neighborhood func-

tion which counts the number of developed cells in the neighborhood. There is a higher probabil-

ity for conversion when a cell is surrounded by a larger number of developed cells[13]. The second

part is related to the similarity between a candidate cell and the ‘ideal point’. The ‘ideal point’ can

produce the best benefit if it is developed. Devel-

opment suitability can be obtained based on various

criteria using land evaluation[14]. The ‘ideal point’

should achieve the maximum scores for all criteria.

A cell with a larger value of similarity with the

‘ideal point’ means that the cell is more similar to

the ‘ideal point’ and a higher growth rate of ‘grey

value’ should be applied to the cell proportionally.

The ‘ideal point’ should have the best criterion

scores for all criteria (fig. 1). The ‘ideal point’ in the

variable space can be expressed as
max max max max
1 2( , ,..., ..., ),j KX X X Xξ = (5)

where max
jX is the maximum score for the jth criterion.

In fact, the ‘ideal point’ is a virtual point. Its transformed coordinate in components space can

be obtained using eq. (1). A series of factors for environmental protection and sustainable devel-

opment can be incorporated in the model by using the ‘ideal point’ approach. A candidate cell that

is more similar to the ‘ideal point’ in terms of site attributes will have a faster rate of urban growth.

This can ensure that greater benefits can be achieved. As mentioned before, the attributes have

been compressed into a few major principal components, but they still contain the most original

information. The principal components are then used to calculate the similarity based on a form of

Euclidean ‘distance’ given by

Fig. 1. Principal components transformation and the

‘ideal point’.
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where diζ is the ‘distance’ between cell i and ‘ideal point’ ξ based on the attributes of m compo-

nents, pcij is the value of jth component for cell i, wj is the weight for the jth component, and 0
jpc

is the transformed score of the ‘ideal point’ for the jth principal component.

The similarity (SIM) is given by

max
SIM 1 ,

i

id

d
ξ

ξ= − (7)

where max

ξi
d is the maximum value of diζ.

The increase of ‘grey value’ should be proportional to the neighborhood function and the

similarity. There holds
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where qt is the total amount of developed cells in the neighborhood N at time t, l is the radius of

the circular neighborhood, and k is the parameter for power transformation.

The parameter k is used to generate more discriminated growth results[4,5,8]. A stochastic dis-

turbance term is also added to represent unknown errors during the simulation. This can allow the

generated patterns to be more close to reality[3]. The error term (RA) can be given by

RA = 1+(−ln γ)α, (9)

where γ is a uniform random variable within the range {0, 1}, and α is a parameter to control the

size of the stochastic perturbation. α can be used as a dispersion factor in this simulation.

Finally, by adding eq. (9) to the model, eq. (8) is revised as
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(10)

At each iteration, the increase of ‘grey value’ will be calculated to determine urban growth.

The cells will be converted into urban areas when their ‘grey values’ reach 1. Complex urban sys-

tems can be simulated by the iterations of CA simulation.

2 Model implementation and results

The model is applied to the simulation of urban development in Shenzhen and Dongguan in
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the Pearl River Delta of southern China. The first step was to obtain and examine the spatial fac-

tors that play an important role in influencing urban development. Distance-based variables can be

used to represent spatial influences. The amenities for urban development may be measured by the

proximities to urban major centres, sub-centres, roads, expressways, railways, parks and rivers.

Distance gradient functions can be used for the estimation of such influences[15]. There is a larger

amount of benefits for a closer distance to these types of influences. However, a spectrum of en-

vironmental suitability could also be used as constraints for CA simulation to reduce development

costs. Environmental suitability can be defined using distance decay functions according to vari-

ous objectives, such as the protection of drinking water (reservoirs), cropland, orchard, vegetable

land, fishpond, forest and wetland. A closer distance to these types of influences can bring about a

larger amount of costs.

Remote sensing and GIS can be used to obtain spatial variables. The first set of six spatial

variables was identified to address the benefits that can be obtained from closer distance to

sources of development attraction. They are a) Distance to the major urban center (city proper); b)

distance to town sub-centres (town centers); c) distance to railways; d) distance to expressways;

e) distance to roads; f) distance to rivers.

A closer distance to these sources of attraction is more beneficial to urban development be-

cause energy and construction costs can be saved. These spatial variables (Xik) can be defined us-

ing the negative exponential function.
dist

,j j
jX e

β−= (11)

where Xj is the spatial variable for the positive criterion j, distj is the distance to the source of de-

velopment attraction for criterion j, and βj is its respective parameter of the distance decay func-

tion. The second set of variables includes these negative factors, a) distance to cropland;

b) distance to orchard; c) distance to vegetable land; d) distance to fishpond; e) distance to reser-

voir (drinking water); f) distance to forest; g) distance to wetland.

A closer distance to these sources will create disturbances or negative effects for environ-

mental and resource protection. These spatial variables can be defined using the following nega-

tive exponential function:
dist

1 .j j
jX e

β−= − (12)

These spatial variables are usually used as the site attributes for general GIS site selection

and urban simulation. However, these spatial variables are usually correlated with each other.

There are problems for using these spatial variables for MCE. It is difficult to provide weights

when the number of spatial variables could be as many as several hundreds[16]. The PCA analysis

should be incorporated in CA simulation to remove data redundancy.

Table 1 lists the principal components created from the thirteen layers of distance variables

for Shenzhen and Dongguan. It is found that the first 5 components account for more than 90% of

the variance of the original thirteen variables (93.9% for Shenzhen and 92% for Dongguan). Even
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the first three components contain more than 80% of the total variance (88.8% for Shenzhen and

81.4% for Dongguan). Therefore, severe data redundancy exhibits in these spatial distance vari-

ables. PCA should be carried out to remove the data redundancy in the CA simulation which deals

with a lot of spatial variables.

Table 1 Principal components and their variance

Shenzhen Dongguan
Principal components

eigenvalues
percentage of
variance (%)

eigenvalues
percentage of
variance (%)

I 90.4 64.1 62.9 44.4

II 25.9 18.4 38.9 27.5

III 8.8 6.2 13.5 9.5

IV 3.7 2.6 8.5 6.0

V 3.6 2.5 6.5 4.6

VI 3.1 2.2 3.2 2.3

VII 1.8 1.3 2.6 1.9

VIII 1.2 0.9 19 1.4

IX 1.0 0.7 1.7 1.2

X 0.5 0.4 0.9 0.7

XI 0.5 0.4 0.5 0.3

XII 0.4 0.3 0.3 0.2

XIII 0.1 0.1 0.1 0.1

Table 2 is the component loadings for the thirteen spatial variables for Dongguan. It is easy

to see that the first component is mainly related to agriculture and ecology, such as fishpond,

vegetable land and wetland. The second component is mainly related to transport conditions, such

as expressways, roads and rivers. The third component is mainly related to centers, such as city

proper and town centres. There are a couple of advantages for the principal components transfor-

mation. The transformation can allow similar variables to group together with a large proportion

of loadings in the same component. Suitable weights can be easily defined since principal com-

ponents are independent of each other. This can avoid the repeated counting that may take place in

general MCE.

The ‘ideal point’ is used to address economic, environmental and resource factors in CA

simulation. These factors are represented by principal components to reduce data redundancy. The

‘ideal point’ is a virtual point having the maximum criteria scores for each criterion with regard to

development suitability. It is the best point as the reference to urban development. The ‘ideal

point’ for urban development is therefore (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Only the first six principal components are used to calculate the similarity because the com-

ponents contain 94.3% of the original information. According to the PCA transformation, the

transformed ‘ideal point’ obtained by using the six principal components becomes (1.2, 2.6, 1.9,

−0.2, −0.4, 0.1).



No. 6 PRINCIPAL COMPONENTS ANALYSIS & CELLULAR AUTOMATA 527

Table 2 Component loadings for the thirteen spatial variables

Principal components
Distance
variables

I ecology
and agri-
culture

II
transport

III
urban

centers

IV
river

V
xpress-
ay

VI
crops

VII VIII IX X XI XII XIII

City proper −0.10 0.07 0.47 −0.50 0.02 0.04 −0.03 −0.07 0.06 0.07 −0.07 −0.17 −0.69

Town centres −0.15 0.05 0.45 −0.52 −0.06 −0.05 0.01 −0.11 −0.04 −0.03 0.06 0.15 0.67

Railways 0.16 0.17 −0.07 −0.15 −0.72 0.15 0.27 0.53 −0.04 0.04 0.00 −0.13 0.01

Expressway −0.26 0.62 −0.11 −0.09 0.51 0.03 0.09 0.50 −0.10 −0.05 0.03 0.05 0.01

Roads −0.07 0.64 −0.34 −0.08 −0.29 −0.07 −0.10 −0.59 0.07 0.06 −0.02 −0.01 −0.02

Rivers −0.43 0.21 0.54 0.63 −0.24 0.11 −0.05 0.00 0.07 −0.06 −0.02 0.01 0.00

Cropland 0.18 0.06 0.06 0.03 0.11 0.74 0.05 −0.22 −0.58 0.05 −0.01 −0.07 0.03

Orchard 0.23 0.10 0.15 0.11 0.18 0.00 0.85 −0.22 0.30 0.03 0.06 −0.01 0.02

Vegetable land 0.49 0.20 0.17 0.05 0.07 0.01 −0.18 0.06 0.16 −0.32 −0.71 0.07 0.08

Fishpond 0.48 0.19 0.17 0.05 0.03 0.10 −0.31 0.05 0.25 −0.25 0.68 0.03 −0.03

Reservoir 0.21 0.09 0.14 0.08 −0.10 −0.34 0.08 0.01 −0.45 0.14 0.06 0.71 −0.21

Forest 0.16 0.09 0.15 0.10 0.02 −0.52 0.06 −0.05 −0.49 −0.17 0.07 −0.62 0.06

Wetland 0.25 0.12 0.15 0.11 0.11 −0.06 −0.19 0.09 0.12 0.87 −0.06 −0.17 0.14

Table 3 Weights for various development objectives

Planning objectives

Principal Compo-
nents

urban-center-based
(city proper and
town centers)
development

transport-based
(expressway, roads

and rivers)
development

cropland-
conservation
development

ecology and agriculture
-conservation (vegeta-
ble, fishpond, orchard,
reservoir and wetland)

development

economic
environmental
development

I Ecology and agri-
culture

0.25 0.25 0.25 1.00 1.00

II Transport 0.25 1.00 0.25 0.25 1.00
III Urban centers 1.00 0.25 0.25 0.25 1.00
IV River 0.25 0.25 0.25 0.25 0.50
V Expressway 0.25 0.25 0.25 0.25 0.50
VI Crops 0.25 0.25 1.00 0.25 1.00
Weights: most important��1.00; very important��0.75; important��0.50; less important��0.25; not important��0

Weights should be provided for different components according to their importance in simu-

lation. There are different combinations of weights for various planning objectives. This can result

in different simulation results. It is very difficult to provide weights when there are many variables

in the simulation. However, the problem can be solved by using PCA because the number of

variables can be much reduced.

The first six components were used to calculate the similarity. The factor loadings were ex-

amined according to table 1. This helps to define the weights reflecting various planning objec-

tives. Weights are usually decided by expert’s experience according to the importance of each

factor. For example, if the planning objective is to protect agriculture and ecology, component I

should be assigned with the highest value of 1. This study only uses five planning objectives to

illustrate the methodology (table 3).

It is easy to make various development plans for different planning objectives. Fig. 2 is the

simulation of transport-based development for Shenzhen in 1988�1997. A higher weight was

used for the second component which has a large proportion of loadings for the variables of ex-
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pressways, roads and rivers. Fig. 3(a) is the simu-

lation of urban-center-based (city proper and town

centers) development for Dongguan. The third

component has a large proportion of loadings for

the variables of city proper and town centers.

There is a large amount of land development in

the northwest part of the flood plain because it is

close to the urban centers. Cropland conservation

can be realized by putting a higher weight on the

sixth component having a large proportion of

loadings for the cropland variable. Cropland will

be best protected if this alternative is realized (fig.

3(b)). The first component has a large proportion of loadings for the variables of vegetable, fish-

pond, orchard, reservoir and wetland. Greater concerns for ecological and agricultural protection

can be built up by putting a higher weight for the first component (fig. 3(c)). There are severe con-

flicts between economic development and environmental conservation in most cases. A compro-

mised objective will help to find an acceptable solution for both environmental conservation and

economic development. The CA model is able to find suitable locations for reducing the conflicts

as many as possible by balancing the weights for different components (fig. 3(d)).

Fig. 3. CA simulation for urban development in Dongguan. (a) Urban-center-based; (b) cropland-conservation-based;

(c) ecological and agricultural protection; (d) environmental conservation and economic development.

Fig. 2. The simulation of transport-based development for

Shenzhen in 1988�1997.
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3 Conclusion

A large set of spatial variables is used in MCE during spatial decisionmaking. These spatial

criteria can be retrieved from GIS. This study shows that there is high correlation between these

criteria according to the principal components analysis. There are problems when MCE is used to

deal with these correlated spatial variables. The correlation of spatial variables violates the princi-

ples of MCE because of repeatedly counting some variables. The study proposes the use of PCA

and the ‘ideal points’ approach to deal with the common problems of spatial correlation. The

PCA-CA model provides a useful planning tool for exploring various possible urban forms based

on a large set of environmental constraints that could be considered in land use planning. It is easy

to incorporate planning objectives in the urban simulation. Further studies are required to incor-

porate more factors, such as development density in the model for more realistic simulation.
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